- space of homeomorphisms
- мат.пространство гомеоморфизмов
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Space (mathematics) — This article is about mathematical structures called spaces. For space as a geometric concept, see Euclidean space. For all other uses, see space (disambiguation). A hierarchy of mathematical spaces: The inner product induces a norm. The norm… … Wikipedia
Covering space — A covering map satisfies the local triviality condition. Intuitively, such maps locally project a stack of pancakes above an open region, U, onto U. In mathematics, more specifically algebraic topology, a covering map is a continuous surjective… … Wikipedia
Locally convex topological vector space — In functional analysis and related areas of mathematics, locally convex topological vector spaces or locally convex spaces are examples of topological vector spaces (TVS) which generalize normed spaces. They can be defined as topological vector… … Wikipedia
Topological space — Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity. They appear in virtually every branch of modern mathematics and are a central unifying notion. The… … Wikipedia
Projective space — In mathematics a projective space is a set of elements constructed from a vector space such that a distinct element of the projective space consists of all non zero vectors which are equal up to a multiplication by a non zero scalar. A formal… … Wikipedia
Homogeneous space — In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non empty manifold or topological space X on which G acts continuously by symmetry in a transitive way. A… … Wikipedia
Perfect space — In mathematics, in the field of topology, perfect spaces are spaces that have no isolated points. In such spaces, every point can be approximated arbitrarily well by other points given any point and any topological neighborhood of the point,… … Wikipedia
Orthocompact space — In mathematics, in the field of general topology, a topological space is said to be orthocompact if every open cover has an interior preserving open refinement. That is, given an open cover of the topological space, there is a refinement which is … Wikipedia
covering space — noun a) A map from a topological space onto another by local homeomorphisms of disjoint preimages. b) The space so mapped … Wiktionary
Mapping class group — In mathematics, in the sub field of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a discrete group of symmetries of the space. Contents 1 Motivation 2… … Wikipedia
Homeomorphism — Topological equivalence redirects here; see also topological equivalence (dynamical systems). donut illustrating that they are homeomorphic. But there does not need to be a continuous deformation for two spaces to be homeomorphic.In the… … Wikipedia